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One of the promising methods of well-sinking, expecially i'n drilling 
through hard rock, involves the use of a high-temperature jet of gas. 
At the points of intensive heating the rocks fracture under the action 
of thermal stresses. Under optimum conditions the rock undergoes frag- 
mentation into small pieces, and the rock material does not fuse. 

We shall formulate and solve the high-temperature drilling problem 
on the assumption that the rock is elastic and fusion phenomena do not 
occur. Expressions will be obtained in a simple closed form for the rate 
of stationary drilling and the size of the particles in the fragmented 
material. 

1. Formulation of the problem. Consider an infinite, uniform, and 
isotropic elastic body with an axially symmetric cavity in the form of 
a semi-infinite cylinder with a rounded base (see Fig. 1). A high- 
temperature jet of gas is played on the bottom of the cavity. The jet 
originates from a reservoir with nozzle A. Thermoelastic stresses ap- 
pear in the medium in accordance with the Duharnel-Neumann law 
[1]. External stresses are assumed to be negligible in comparison with 
the characteristic temperature stresses. The surface region of the body 
undergoes fragmentation for sufficiently high stresses, and the resulting 
particles are carried off by a gas jet. Brittle fragmentation is assumed, 
and fusion effects are absent, These conditions impose a certain re- 
striction on the temperature distribution in a purely brittle fragmen- 
tation. 

We shall employ the following basic assumption: 

~ / v d . ~  i (~ = k/pc) ,  (l.l) 

where u is the thermal diffusivity, k is the  thermal conductivity, 
p is the density, c is the specific heat, d is a typical linear dimension 
of the body (for example, the radius of curvature of the bottom, or the 
radius of the cylinder), and v is the normal drilling velocity, i. e. ,  the 
rate of displacement of the boundary of the body (as a result of the 
removal of the fragmented material.) along the normal to the surface. 

The assumption given by Eq. (1.1) means that the external tem- 
perature field at each point on the boundary of the body penetrates to 
a depth which is small in comparison with the characteristic linear 
size of the part of the boundary which is subject to intensive heating, 
The condition given by Eq. (1.1) is satisfied by low values of thermal 
diffusivity for most rigid rocks. For example, if we suppose that d 
~ 10 cm and take x = 10 -s - 10 -~ cm2/sec, which is realistic for typ- 
ical rocks, we find from Eq. (1.1) that v >> 10 - 4 -  10"Scm/sec. This 
condition is not too restricting in view of the average rate of well- 

sinking. 
From Eq. (1.1) the normal rate of drilting at a given point on the 

surface of the body is completely determined by the local flow pa- 
rameters and the parameters of the body itself in the neighborhood of 
this point, We shall use the Cartesian coordinates xyz with the origin 
at a point 0 on the surface of the body, and the z axis normal to the 
surface in the inward direction. The stress, deformation, and tem- 
perature fields at 0 will then be slowly varying functions of x and y 

but rapidly varying functions of z. These fields form a peculiar wall 

layer. For the elastic displacement vector u, v, w, and the temper- 

ature T in the neighborhood of 0 we have from Eq. (I. I) in the usual 

approximation 

u =  v =  0, w = w ( z ,  t), T =  T ( z ,  t) .  (1.2) 

If we neglect inertial forces we find that the Lame equation as- 
sumes the form [I] 

O~w OT 
(~ -5 2~) ~ ~ (3~ + 2~) a ~ = 0 ,  (1.3) 

where a is the linear expansion coefficient, and k and # are the Lame 
constants. The elastic and thermal constants of the body are assumed 
to be temperature-independent for the sake of simplicity. The initial 
temperature of the body is assumed to be zero throughout. 

From the conditions at infinity 

O w / d z = O ,  T - - O  for z - - . oo ,  (1.4) 

and the Lame equation (1.8) we find that 

0w 3~ -b 2~t T 
0-7- = ~ a . (1.5) 

From Hooke's law and Eq. (1.5) we find that the principal stresses 
are given by 

s E T  
ex = ~y = --, I ------~- ' ez = 0 . (I. 6) 

Therefore, near the surface we have a two-dimensional stress state 
with multiIaterai compression. The compressing stress is a maximum 
onthe surface and decreases rapidly with increasing depth z. The tem- 
perature of the body satisfies the heat-conduction equation 

O2T aT 
• ( z ~ 0 )  ( t - -  t i m e ) ,  (1.7) 

and the boundary heat transfer condition at z = 0 

OT 
- - k - ~ z - = h ( T o - -  T ) , (1.8) 

where T O is the temperature of the incident gas at the point 0, and h 
is the heat-transfer coefficient, 

It is important to note that when Eqs. (1.2)-(1.8)  are vaIid for 
stationary fragmentation, they are even more valid under the cor- 
responding nonstationary conditions. 

2. Stationary drilling. 2.1. Let us first determine the normal rate 
of stationary drilling. Suppose that the boundary of the half-space is 
displaced with constant velocity v along the normal to its plane, and 
the gas temperature T o and the coefficient h are constant on the bound- 
ary. To find the temperature of the body we must solve the following 

boundary-value problem: 

O~T 02" 
z -~-z~ =-SF ( z - - v t > 0 ) ,  

OT 
__ k-~-z = h ( T o - -  T ) (z = ~t),  

T = O OT/Oz = O for z - -  vt---, ~ (2.1) 

The solution of this problem is 

',~ro exp [ ~ ( " -  vt) T =  kv+hx ~ ]. (2.2) 

The displacement of the boundary occurs as a result of continuous 
fragmentation of the body, and the removal of the fragments by the 
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stream. The stress state of the body is described by Eq. (1.6). We shall 
assume that the following additional boundary condition is valid on the 
free surface of the half-space: 

z~  = % = - -  z s  (~ = v t ) ,  ( 2 . 3 )  

where o s is the compression strength of the body. 
We then find from Eqs. (1.6), (2.2), and (2.3) that the normal 

drilling velocity is 

h• [ nET  o ! 
= ~ -  L ~ - -  ~ " (2.4-)  

From the solution of the problem given by Eqs. (2.2) and (2.4) we can 
readily find the condition for the absence of fusion effects: 

(1 - -  ~) % 
aETn < t ,  (2,5) 

where T is the melting point. 
n 

2.2. We shall now estimate the size of the particles produced as a 
result of fragmentation. To do this we must consider in somewhat 
greater detail the fragmentation mechanisms operating in the surface 
layer. Two such mechanisms are possible in the case of compression. 
One of them is connected with the propagation of cracks [2], and the 
other with the loss of stability and Iocal inhomogeneity of the mate- 
rim [2]. In our problem, the first mechanism operates during the 
initial stage of crack development while the second mechanism pre- 
dominates during the final stage, since thermal stresses are concen- 
trated in a narrow layer near the surface, and a thin plate of material 
in this layer is under the action of two equal principal compressing 
stresses. The particles of the fragmented material are therefore thin 

plates of thickness 5 which is much less than the characteristic linear 

size b in the transverse direction. 
To estimate 6 we shall assume that the entire elastic energy of 

the particle which it has prior to fragmentation is converted into the 
effective surface energy of this particle as a result of fragmentation, 

which is given by 

6S U = 7 (2S + p6) ,  (2.6) 

where U is the elastic energy per unit volume, y is the effective sur- 
face energy per unit area, and S and p are the area and perimeter of 
the particle in plan, respectively. 

According to Eq. (2.3) 

l - - v  
g = ~ % 2 ,  (2.7) 

and if we suppose that p6 << 2S, we find from Eq. (9.6) that 

2TE (2.8) 

The quantity b evidently depends on the ratio of the compression 

strength u s and the tensile strength up, since when the plate is pulled 
from the main body, one face of the plate experiences normal ten- 

sile stress 

b = ~] (% /%) ,  (2.9) 

where ~ is a certain function. 
Physical considerations suggest that when b >> 6 we must have 

o s >> Op and, conversely, when u s ~ op we should have b ~ 5, i.e., 

the mechanism involving loss of stability no longer operates. It can be 
shown in the latter case that we can again use Eq. (2.8) to estimate & 

from known specific surface energy y. 
Consider a numerical example. For silicate glass 0rE7)l/2 .~ 5.10 s 

kg/cmS/2, v = 0.25, C~s = 104 kg/cm 2. Hence it follows from Eq. (2.8) 
that 5 ~ 0.2 cm. It is important to note that the values of 7 for rocks 

have not been extensively investigated. 
3. Nonstatlonary problem. 3. 1. Let us return to the original ax- 

ialty symmetric drilling problem (Fig. 1). We shall consider sta- 
tionary drilling, in which case the temperature of the body and the 
shape of the cavity depend only on the variables g = zt -- v . t  and p, 

where zl, p are cylindrical coordinates (p = 0 on the axis of sym- 
metry), and v, is the rate of drilling. In the present case the temper- 
ature and velocity of the gas jet and, consequently, the heat transfer 
coefficient are different at each point on the surface of the cavity, so 
that the normal drilling rate v at each point will be related to the 
unknown shape of the cavity ~ = g(p) as follows: 

, ,  = v ,  / F i ~  [ ; '  O) l  ~ �9 (a. 1) 

At the point where the gas stream comes to rest, which lies on the 

axis of symmetry and on the surface of the body (g = 0, p = 0), the 
normal drilling rate v is equal to the drilling rate v. .  Using Eq. (2.4) 
which gives the normal drilling rate, we obtain the following ex- 

pression: 

h, I ~ r .  1] (3. 2) 

Thus, the drilling rate v,~ is completely determined by the fol- 
lowing parameters: the heat-transfer coefficient h. between the gas and 
the solid at the point where the jet comes to rest, the stagnation 
temperature T. of the gas stream, the density of the body, its specific 
heat c, Young's modulus E, the linear thermal expansion c% the Pois- 
son ratio u, and the compression strength o s of the body. 

The Shape of the cavity in quasi-stationary approximation can be 
determined by solving the gasdynamic temperature problem. The 
additional boundary conditions for the temperature on the unknown 
contour are given by Eqs. (3.1) and (2.4). Imai's formula [3], ob- 
tained from the boundary-layer equations, can be used to determine 
the heat-transfer coefficient h. There is a device, however, which 
can be used to obtain an approximate solution of the cavity-shape 
problem. The temperature T o and the stream velocity U 0 on the sur = 
face of the body (on the outer boundary of the boundary layer) will be 

approximated by the functions 

To = cp (s), U0 = ~ (s) (s --arc length) , (3.3) 

which are chosen on the basis of convenience and are specified to 
within a number of adjustable constants. If we solve the boundary- 
layer equations subject to Eq. (3.3) on the outer surface, and use the 

condition 

(t - -  ~) % ( 3 . 4 )  
T = ctE ' 

for the temperature of the gas on the surface of the body (found from 
Eqs. (1.6) and (2.3)), we find the heat=transfer coefficient 

h = co ( ~ ) ,  ( 3 . 5 )  

which also depends on a number of constants. 
If we eliminate v from (2.4) and (3.1) in the quasi-stationary ap- 

proximation, we obtain the following relation connecting the shape of 
the cavity g = g(p) with the heat transfer coefficient h and temperature 

To: 
1 h [aETo - -  (i - -  v)z~] (3.6) 

tz t  + [{, (p)]'~ --  h.  I~ET,  - - ( t  --  v)%] " 

In terms of the parametric variable s (length of arc), and using 
Eqs. (3.3) and (3.5), we obtain 

p = iO(s)ds ,  
o 

~ = g i - - O ~ ( s ) d s ,  O ( s ) = , o ( O ) f a E q ) ( O ) _ ( t _  a,)~l , (3.7) 

which is the required equation for the shape of the cavity in parametric 

form. 
From the shape of the cavity (determined to within a number of 

constants) we can determine the gas flow in the cavity, and then find 
the undetermined constants. In this way, all three problems, i.e., the 
flow of the ideal gas in the cavity, the flow of a viscous gas in the 
boundary layer, and the fragmentation of the solid under the action 

of  the temperature stresses are found to be closely related. The above 
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method of solving the combined problem can also be used to obtain 
the exact solution, although this will, of course, require the use of 
computers. 

3 .2 .  Finally, we must determine the error which is introduced by 
replacing the nonstationary problem (due to the curvilinear shape of 
the cavity) by the quasi-stationary problem of solid fragmentation. To 
do this, we must est imate the characteristic t ime  r which is necessary 
to reach the stationary state, The condition for quasi-steadiness can 
then be written in the form 

�9 v ~ d , (3.8) 

where v is the normal drilling velocity and d is a typical linear di- 
mension of the cavity. From Eqs. (1.7) and (1.8) we can determine T 
by solving the boundary-value problem 

O'-T OT 
Oz 2 Ot [ z - - v ( t ) l t ~ > O )  T = O  for t = 0 ;  

k OT - -  -~7-z = h ( T o - - T )  for z = O ,  O ~ t . < h ,  

OT 
T : : T ~ ,  ~ =Q for z - = v ( t )  t, ((v( t )>O),  t > h ) ,  

(T1 (t - -  v) z~ h 
0rE ' Q . . . .  ~-:  (To - -  T,)) . (3.9) 

Dimensional analysis shows that 

"~= ~ T 1 2 / z Q  ~ for t l . ~ x  , (3.10) 

where t3 is a constant factor. 
Using gqs. (2 .4 )and  (3.10), we can reduce Eq. (3.8) to the form 

f} ~/vd < i. (3.11) 

As can be seen, this quasi-steadiness condition follows from the basic 
assumption given by Eq. (1.1). 
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